广泛观察到的神经缩放定律,其中错误是训练集大小,模型大小或两者兼而有之的误差,从而促进了深度学习的实质性改进。但是,仅通过缩放来进行这些改进就需要计算和能源成本相当大。在这里,我们专注于数据集大小的错误缩放,并展示在理论和实践中如何超越幂律的扩展,并将其减少到指数缩放,如果我们可以访问高质量的数据修剪指标,以将顺序排名为应该丢弃哪些培训示例以实现任何修剪的数据集大小。然后,我们通过经验修剪的数据集大小来测试这一新的指数缩放预测,并且实际上观察到了在CIFAR-10,SVHN和Imagenet训练的重新NET上的功率定律缩放性能。鉴于找到高质量的修剪指标的重要性,我们对ImageNet上十个不同的数据修剪指标进行了第一个大规模的基准测试研究。我们发现大多数现有的高性能指标尺寸较差,而对于ImageNet来说,最佳尺度是计算密集型的,并且需要为每个图像标签。因此,我们开发了一种新的简单,便宜和可扩展的自我监督的修剪指标,该指标与最佳监督指标相当。总体而言,我们的工作表明,发现良好的数据指标可能会为可行的途径提供可行的途径,从而大大改善神经缩放法律,从而降低现代深度学习的资源成本。
translated by 谷歌翻译
精确了解人造网络中为何对某些刺激作出反应的单位会致力于解释人工智能的一步。一个广泛使用的方法对此目标是通过激活最大化来可视化单元响应。这些合成特征可视化被声称提供了具有关于导致单元被激活的图像特征的精确信息的人类 - 在其他替代方案中具有强烈激活的自然数据集样本的优点。如果人类确实获得了可视化的因果洞察,这应该使它们能够预测干预的效果,例如如何遮挡图像的某些斑块(例如,狗的头部)改变单位的激活。在这里,我们通过询问人类来确定两个方形遮挡中的哪一个来测试这个假设,导致单元的激活更大。具有专家的大规模众群实验和测量结果表明,平均奥拉等人的激活特征可视化。 (2017)确实帮助人类对此任务(68美元\ PM 4 $%的准确性;没有任何可视化的基线表现为60份\ PM 3 $%)。然而,它们不提供其他可视化(例如DataSet样本)的任何实质性优势,其产生类似的性能(66美元,PM3 $%至67美元\ PM3 $%准确性)。我们联合起来,提出了一个客观的心理物理任务来量化单位级别解释性方法对人类的益处,并且没有证据表明,广泛使用的特征可视化方法提供了比简单的替代可视化的单位激活更好的“因果理解”。
translated by 谷歌翻译
Deep learning has triggered the current rise of artificial intelligence and is the workhorse of today's machine intelligence. Numerous success stories have rapidly spread all over science, industry and society, but its limitations have only recently come into focus. In this perspective we seek to distil how many of deep learning's problem can be seen as different symptoms of the same underlying problem: shortcut learning. Shortcuts are decision rules that perform well on standard benchmarks but fail to transfer to more challenging testing conditions, such as real-world scenarios. Related issues are known in Comparative Psychology, Education and Linguistics, suggesting that shortcut learning may be a common characteristic of learning systems, biological and artificial alike. Based on these observations, we develop a set of recommendations for model interpretation and benchmarking, highlighting recent advances in machine learning to improve robustness and transferability from the lab to real-world applications. This is the preprint version of an article that has been published by Nature Machine Intelligence
translated by 谷歌翻译
Convolutional Neural Networks (CNNs) are commonly thought to recognise objects by learning increasingly complex representations of object shapes. Some recent studies suggest a more important role of image textures. We here put these conflicting hypotheses to a quantitative test by evaluating CNNs and human observers on images with a texture-shape cue conflict. We show that ImageNettrained CNNs are strongly biased towards recognising textures rather than shapes, which is in stark contrast to human behavioural evidence and reveals fundamentally different classification strategies. We then demonstrate that the same standard architecture (ResNet-50) that learns a texture-based representation on ImageNet is able to learn a shape-based representation instead when trained on 'Stylized-ImageNet', a stylized version of ImageNet. This provides a much better fit for human behavioural performance in our well-controlled psychophysical lab setting (nine experiments totalling 48,560 psychophysical trials across 97 observers) and comes with a number of unexpected emergent benefits such as improved object detection performance and previously unseen robustness towards a wide range of image distortions, highlighting advantages of a shape-based representation.
translated by 谷歌翻译
We present a dynamic path planning algorithm to navigate an amphibious rotor craft through a concave time-invariant obstacle field while attempting to minimize energy usage. We create a nonlinear quaternion state model that represents the rotor craft dynamics above and below the water. The 6 degree of freedom dynamics used within a layered architecture to generate motion paths for the vehicle to follow and the required control inputs. The rotor craft has a 3 dimensional map of its surroundings that is updated via limited range onboard sensor readings within the current medium (air or water). Path planning is done via PRM and D* Lite.
translated by 谷歌翻译
Nine language-vision AI models trained on web scrapes with the Contrastive Language-Image Pretraining (CLIP) objective are evaluated for evidence of a bias studied by psychologists: the sexual objectification of girls and women, which occurs when a person's human characteristics are disregarded and the person is treated as a body or a collection of body parts. A first experiment uses standardized images of women from the Sexual OBjectification and EMotion Database, and finds that, commensurate with prior research in psychology, human characteristics are disassociated from images of objectified women: the model's recognition of emotional state is mediated by whether the subject is fully or partially clothed. Embedding association tests (EATs) return significant effect sizes for both anger (d >.8) and sadness (d >.5). A second experiment measures the effect in a representative application: an automatic image captioner (Antarctic Captions) includes words denoting emotion less than 50% as often for images of partially clothed women than for images of fully clothed women. A third experiment finds that images of female professionals (scientists, doctors, executives) are likely to be associated with sexual descriptions relative to images of male professionals. A fourth experiment shows that a prompt of "a [age] year old girl" generates sexualized images (as determined by an NSFW classifier) up to 73% of the time for VQGAN-CLIP (age 17), and up to 40% of the time for Stable Diffusion (ages 14 and 18); the corresponding rate for boys never surpasses 9%. The evidence indicates that language-vision AI models trained on automatically collected web scrapes learn biases of sexual objectification, which propagate to downstream applications.
translated by 谷歌翻译
Algorithms that involve both forecasting and optimization are at the core of solutions to many difficult real-world problems, such as in supply chains (inventory optimization), traffic, and in the transition towards carbon-free energy generation in battery/load/production scheduling in sustainable energy systems. Typically, in these scenarios we want to solve an optimization problem that depends on unknown future values, which therefore need to be forecast. As both forecasting and optimization are difficult problems in their own right, relatively few research has been done in this area. This paper presents the findings of the ``IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling," held in 2021. We present a comparison and evaluation of the seven highest-ranked solutions in the competition, to provide researchers with a benchmark problem and to establish the state of the art for this benchmark, with the aim to foster and facilitate research in this area. The competition used data from the Monash Microgrid, as well as weather data and energy market data. It then focused on two main challenges: forecasting renewable energy production and demand, and obtaining an optimal schedule for the activities (lectures) and on-site batteries that lead to the lowest cost of energy. The most accurate forecasts were obtained by gradient-boosted tree and random forest models, and optimization was mostly performed using mixed integer linear and quadratic programming. The winning method predicted different scenarios and optimized over all scenarios jointly using a sample average approximation method.
translated by 谷歌翻译
We apply the vision transformer, a deep machine learning model build around the attention mechanism, on mel-spectrogram representations of raw audio recordings. When adding mel-based data augmentation techniques and sample-weighting, we achieve comparable performance on both (PRS and CCS challenge) tasks of ComParE21, outperforming most single model baselines. We further introduce overlapping vertical patching and evaluate the influence of parameter configurations. Index Terms: audio classification, attention, mel-spectrogram, unbalanced data-sets, computational paralinguistics
translated by 谷歌翻译
Common to all different kinds of recurrent neural networks (RNNs) is the intention to model relations between data points through time. When there is no immediate relationship between subsequent data points (like when the data points are generated at random, e.g.), we show that RNNs are still able to remember a few data points back into the sequence by memorizing them by heart using standard backpropagation. However, we also show that for classical RNNs, LSTM and GRU networks the distance of data points between recurrent calls that can be reproduced this way is highly limited (compared to even a loose connection between data points) and subject to various constraints imposed by the type and size of the RNN in question. This implies the existence of a hard limit (way below the information-theoretic one) for the distance between related data points within which RNNs are still able to recognize said relation.
translated by 谷歌翻译
The proliferation of automatic faithfulness metrics for summarization has produced a need for benchmarks to evaluate them. While existing benchmarks measure the correlation with human judgements of faithfulness on model-generated summaries, they are insufficient for diagnosing whether metrics are: 1) consistent, i.e., decrease as errors are introduced into a summary, 2) effective on human-written texts, and 3) sensitive to different error types (as summaries can contain multiple errors). To address these needs, we present a benchmark of unfaithful minimal pairs (BUMP), a dataset of 889 human-written, minimally different summary pairs, where a single error (from an ontology of 7 types) is introduced to a summary from the CNN/DailyMail dataset to produce an unfaithful summary. We find BUMP complements existing benchmarks in a number of ways: 1) the summaries in BUMP are harder to discriminate and less probable under SOTA summarization models, 2) BUMP enables measuring the consistency of metrics, and reveals that the most discriminative metrics tend not to be the most consistent, 3) BUMP enables the measurement of metrics' performance on individual error types and highlights areas of weakness for future work.
translated by 谷歌翻译